Sensory processing sensitivity, stress and anxiety in young high-functioning adults with Autism Spectrum Disorder

Lysandra Podesta
Maarten Wijnants
Anna Bosman
Autism spectrum disorder (ASD)

DSM-5:

1) Limitations social communication/interaction

2) Restricted behaviour/interests/activities
 (subsymptom: sensory over-/underresponsivity)
<table>
<thead>
<tr>
<th>Aesthetic experiences</th>
<th>*</th>
<th>-</th>
<th>-</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low sensory threshold</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ease of excitation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* Only “attention to details” (= ASD symptom)
SPS in ASD population?

From empirical research with people with ASD:

Sensory processing differences in early development (over-/underresponsive)

Too intense \rightarrow (social) withdrawal (Liss et al., 2008)

Brains more active while “resting” (Perez Velazquez & Galan, 2013)

From self-report of people with ASD:

Sensory processing \rightarrow autistic symptoms (constraining communication; Robledo et al., 2012)

Common: “stress” and “anxiety” (Donnellan et al., 2012)
But: empathy? Noticing subtleties?
But: empathy? Noticing subtleties?

YES

Recent ASD theories:

1) Empathy imbalance (Smith, 2009):
 - Low cognitive empathy
 - Normal-high emotional empathy

2) Intense world theory
 (Markram & Markram)
But:

ASD: hyper- AND hyporesponsive?

1) Overwhelmed nervous system:
Hyper- and hyporesponsive stress system

2) ASD subgroup..?

Common comorbidities in ASD:
Hyperarousal: (social) anxiety disorder (84%), ADHD (14-78%)
Hypoarousal: depression (43%)
More research needed

SPS / sensory processing in ASD?

↔ subjective and objective stress (heart rate) in ASD?
Participants

ASD: 10 women, 10 men (18 - 27 years old)

No ASD: 13 women, 10 men (17 - 34 years old)

All: university / higher vocational education
Study*

Questionnaires Stroop

* Heart rate measured during entire study
Questionnaires

Highly Sensitive Person scale (Aron & Aron)

Adolescent/Adult Sensory Profile
 Four quadrants

State-Trait Anxiety Scale
 State anxiety

Visual Analogue Scales
 Anxiety, subjective stress
Self-Regulation Strategies

<table>
<thead>
<tr>
<th>Neurological Threshold Continuum</th>
<th>Self Regulation Behavioral Response Continuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (habituation)</td>
<td>Passive Strategies ← Active Strategies</td>
</tr>
<tr>
<td>Low (sensitization)</td>
<td>Low Registration ← Sensation Seeking</td>
</tr>
<tr>
<td></td>
<td>Sensory Sensitivity ← Sensation Avoiding</td>
</tr>
</tbody>
</table>

1 2

3 4
Questionnaires

Highly Sensitive Person scale

Adolescent/Adult Sensory Profile
 Four quadrants

State-Trait Anxiety Scale
 State anxiety

Visual Analogue Scales
 Anxiety, subjective stress
Visual Analogue Scales
Subjective stress and anxiety

No stress | Extreme stress
Study*

* Heart rate measured during entire study
Stroop task (1060 words)

Approximately 30 minute Stroop + unexpected bleeps
Overall sensory processing sensitivity
(possible scores: 27 – 189)
<table>
<thead>
<tr>
<th></th>
<th>ASD (versus no ASD)</th>
<th>ASD women (versus ASD men)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low registration</td>
<td>ASD > no ASD*</td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensory sensitivity</td>
<td>ASD > no ASD*</td>
<td>women > men*</td>
</tr>
<tr>
<td>Sensation seeking</td>
<td>ASD < no ASD*</td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensory avoiding</td>
<td>ASD > no ASD**</td>
<td>n.s.</td>
</tr>
<tr>
<td>SPS (Aron & Aron)</td>
<td>ASD > no ASD**</td>
<td>women > men*</td>
</tr>
</tbody>
</table>

* p < .05; ** p < .001
SPS \leftrightarrow stress

Subjective + objective stress (heart rate)

ASD and no ASD
Correlations

<table>
<thead>
<tr>
<th></th>
<th>Subjective stress</th>
<th></th>
<th>Objective stress</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VAS stress</td>
<td>VAS anxiety</td>
<td>STAI</td>
<td>Heart rate</td>
</tr>
<tr>
<td>SPS (Aron & Aron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No ASD</td>
<td>.45 *</td>
<td>.51 *</td>
<td>.57 *</td>
<td>.02</td>
</tr>
<tr>
<td>ASD</td>
<td>.41</td>
<td>.27</td>
<td>.41</td>
<td>.62 *</td>
</tr>
<tr>
<td>Sensory sensitivity (AASP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No ASD</td>
<td>.32 *</td>
<td>.23</td>
<td>.56 *</td>
<td>-.12</td>
</tr>
<tr>
<td>ASD</td>
<td>.24</td>
<td>.06</td>
<td>.08</td>
<td>.32 #</td>
</tr>
</tbody>
</table>

marginally significant
Conclusions:

(High-functioning) ASD strongly related to SPS
Subjective stress not related to SPS in ASD
Objective stress related to SPS in ASD

SPS might explain ASD symptoms

Future research:

Larger study (new study planned)
Replication SPS ↔ stress (reactivity) (in ASD)
Associations SPS ↔ social / daily functioning in ASD

Radboud University Nijmegen
<table>
<thead>
<tr>
<th></th>
<th>ASD (versus no ASD)</th>
<th>ASD women (versus men)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low registration</td>
<td>$p = .016 \rightarrow$ higher</td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensory sensitivity</td>
<td>$p = .005 \rightarrow$ higher</td>
<td>$p = .005 \rightarrow$ higher</td>
</tr>
<tr>
<td>Sensation seeking</td>
<td>$p = .016 \rightarrow$ lower</td>
<td>n.s.</td>
</tr>
<tr>
<td>Sensory avoiding</td>
<td>$p < .001 \rightarrow$ higher</td>
<td>n.s.</td>
</tr>
<tr>
<td>SPS (Aron & Aron)</td>
<td>$p < .001 \rightarrow$ higher</td>
<td>$p = .03 \rightarrow$ higher</td>
</tr>
</tbody>
</table>

* $p < .05$; ** $p < .001$